US009123162B2

a2z United States Patent (10) Patent No.: US 9,123,162 B2
Burley et al. 45) Date of Patent: Sep. 1, 2015
(54) INTEGRATION CONE TRACING 7,129,940 B2 10/2006 Cook
7,168,074 Bl 1/2007 Srinivasa
. . 7,289,119 B2 10/2007 Heirich
(75) Inventors' Brent Burley’ Monterey Park’ CA .([JS)S 7’675’518 Bl % 3/2010 Mlller """""""""""""" 345/426
Andrew Selle, MOntrOSe, CA ([JS), 7,783,695 Bl 8/2010 Tyrrell
Christian Eisenacher, Burbank, CA 8,106,906 Bl 1/2012 Duff
(US); Gregory Nichols, North 8,174,524 Bl 5/2012 Laur
Hollywood CA (US) 8,217,949 Bl 7/2012 Carpenter
’ 8,400,447 Bl 3/2013 Carr
. . . 8,411,082 Bl 4/2013 Cook
(73) Assignee: Disney Enterprises, Inc., Burbank, CA 8.416.260 Bl 42013 Carpenter
(US) 8,436,856 Bl 52013 Duff
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 153 days.
Crassin, C. et al.: “Interactive Indirect [llumination Using Voxel Cone
(21) Appl. No.: 13/493,929 Tracing”, Pacific Graphics 2011, vol. 30, No. 7, 2011, 10 pages,
Retrieved from the Internet: <URL:https://research.nvidia.com/sites/
(22) Filed: Jun. 11, 2012 default/files/publications/GIVoxels-pg201 1-authors.pdf>.
(Continued)
(65) Prior Publication Data
US 2013/0328875 Al Dec. 12, 2013 Primary Examiner — Said Broome
(74) Attorney, Agent, or Firm — Farjami & Farjami LLP
(51) Imt.ClL
GO6T 15/06 (2011.01) (57) ABSTRACT
(52) IGJ0S6TCi5/50 (2011.01) A method is provided for integration cone tracing with par-
2.] ticular application for feature films and other demanding
CPC s GO6T 15/06 (2013.01); G0gg’ 1135(/)510 content creation using scenes of high complexity requiring
. . . (D) global illumination. Instead of using a conventional noise
(58) Field of Classification Search prone ray tracer, cones are intersected with a scene bounding
None . hierarchy to determine intersecting scene geometry, and inte-
See application file for complete search history. gration results are computed by directional sampling within
. the cones. As a result, the working data set may be reduced as
(56) References Cited the rendering may begin with a smaller set of cones as com-
U.S. PATENT DOCUMENTS pared to the large number of rays required for acceptable
filtering in a conventional ray tracer. Furthermore, by refining
5,045,995 A 9/1991 Levinthal the cones during the rendering only on an as-needed basis
5,923,330 A . 7/1999 Tarlton according to an acceptable noise threshold and by sharing
g’g (1)8’ ég(s) g 1% 1 (1);388(1) Iéggv%};;leéta;i """""""" 33276‘33 secondary cone bounces among primary cones, the process-
6326964 Bl 122001 Snyder Lo ing workload and data set requirements may be kept to a
6:496:60 1 Bl 122002 Migdal reasonable level even for multiple global illumination passes.
6,714,936 Bl 3/2004 Nevin
7,095,409 B2 8/2006 Cook 19 Claims, 4 Drawing Sheets

400

Arrange a scene having a plurality of scene
objects into a scene bounding hierarchy

L~ 410

objects

Intersect a cone with the scene bounding
hierarchy to determine an intersecting set of
scene abjects from the plurality of scene

| 420

Compute an integration result for the
Intersecting set of scene objects by
directicnal sampling within the cone

| 430

Shade an output image based on the
integration result

_/\ 430

US 9,123,162 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,436,867 Bl 5/2013 Duff
8,466,919 Bl 6/2013 Duff
8,493,383 Bl 7/2013 Cook

2002/0050990 Al
2005/0146522 Al
2005/0243086 Al
2006/0209067 Al
2007/0262988 Al
2008/0180440 Al
2009/0225081 Al
2009/0262132 Al
2010/0231589 Al
2012/0147015 Al
2013/0016107 Al
2014/0285499 Al

OTHER PUBLICATIONS

5/2002 Sowizral
7/2005 Maillot
11/2005 Schechter
9/2006 Pellacini
11/2007 Christensen
7/2008 Stich
9/2009 Keller
10/2009 Peterson
9/2010 Salsbury
6/2012 Rogers
1/2013 Dharmapurikar
9/2014 TIwasaki

Arvo, J.: “Fast Ray Tracing by Ray Classification”, ACM, 2 Penn
Plaza, Suite 701—New York, USA, vol. 21, No. 4, Jul. 1987, 10
pages.

Amanatides, J.: “Ray tracing with cones” Computers and Graphics,
Elsevier, GB, vol. 18, No. 3, Jul. 1, 1984, pp. 129-135, 7 pages.
Wald, I. et al: “Interactive Global Illumination using Fast Ray Trac-
ing”, ACM, 2 Penn Plaza, Suite 701—New York, USA, 2002, 11
pages.

Wikipedia: “Stencil Buffer”, Apr. 3, 2012, Retrieved from the
Internet: <URL:http://en.wikipedia.org/w/index.php?title=Stencil _
buffer&oldid=485283047> 2 pages.

EESR dated Feb, 7, 2013 re Application No. 13160552.9.

Afra, A., “Incoherent Ray Tracing without Acceleration Structures”,
Eurographics 2012 Short Paper, 4 pages.

Aila et al. 2010. Architecture considerations for tracing incoherent
rays. In Proceedings of the Conference on High Performance Graph-
ics (HPG °10). Furographics Association, Aire-la-Ville,
Switerzerland, Switzerland, 113-122.

Arvo et al., Fast ray tracing by ray classification, Proceedings of the
14th annual conference on Computer graphics and interactive tech-
niques, p. 55-64, Aug. 1987 [doi>10.1145/37401.37409].

Benthin et al., Combining Single and Packet-Ray Tracing for Arbi-
trary Ray Distributions on the Intel MIC Architecture, IEEE Trans-
actions on Visualization and Computer Graphics, v.18 n.9, p. 1438-
14, Sep. 2002.

Bikker, J., Improving Data Locality for Efficient In-Core Path Trac-
ing, Computer Graphics Forum, v.31, n.6, p. 1936-1947, Sep. 2012,
[doi>10.1111/j.1467-8659.2012.03073 x].

Boulos et al.: Adaptive ray packet reordering. In Proc. of Interactive
Ray Tracing (2008).

Budge et al.: Out-of-core data management for path tracing on hybrid
resources. In Computer Graphics Forum (2009).

Christensen et al., “Ray Tracing for the Movie ‘Cars’”, Interactive
Ray Tracing 2006, IEEE Symposium,, Sep. 18-20, 2006, pp. 1-6.
Crassin et al. (2011), Interactive Indirect Illumination Using Voxel
Cone Tracing. Computer Graphics Forum, 30: 1921-1930, doi:
10.1111/5.1467-8659.2011.02063 .x.

Dammertz et al., Shallow bounding volume hierarchies for fast
SIMD ray tracing of incoherent rays, Proceedings of the Nineteenth
Eurographics conference on Rendering, Jun. 23-25, 2008, Sarajevo,
Bosnia and Herzegovina.

Ernst et al.: Multi bounding volume hierarchies. In Proc. of Interac-
tive Ray Tracing (2008).

Garanzha et al.: Fast ray sorting and breadth-first packet traversal for
GPU ray tracing, Computer Graphics Forum (2010).

Gribble et al.: Coherent ray tracing via stream filtering. In Proc. of
Interactive Ray Tracing (2008).

Hanika et al., Two-level ray tracing with reordering for highly com-
plex scenes, Proceedings of Graphics Interface 2010, May 31-Jun. 2,
2010, Ottawa, Ontario, Canada.

Hanrahan, P., Using caching and breadth-first search to speed up
ray-tracing, Proceedings on Graphics Interface *86/Vision Interface
’86, p. 56-61, Aug. 1986, Vancouver, British Columbia, Canada.
Hoberock et al., Stream compaction for deferred shading, Proceed-
ings of the Conference on High Performance Graphics 2009, Aug.
1-3, 2009, New Orleans, Louisiana [doi>10.1145/1572769.
1572797].

Kato et al., “Parallel Rendering and the Quest for Realism: The
‘Kilauea’ Massively Parallel Ray Tracer”, Practical Parallel Process-
ing for Today’s Rendering Challenges, SIGGRAPH 2001, Course
Note #40, ACM, Aug. 2001, Los Angeles, USA, Aug. 12-17, 1 p.
Kato, T., “Kilauea™: parallel global illumination renderer, Proceed-
ings of the Fourth Eurographics Workshop on Parallel Graphics and
Visualization, Sep. 9-10, 2002, Blaubeuren, Germany.

Keller et al., “Efficient Ray Tracing without Auxiliary Acceleration
Data Structure”, HPG 2011, 1 page.

Moon et al., Cache-oblivious ray reordering, ACM Transactions on
Graphics (TOG), v.291.3,p. 1-10, Jun. 2010 [doi>10.1145/1805964.
1805972].

Nakamaru et al., Breadth-First Ray Tracing Utilizing Uniform Spa-
tial Subdivison, IEEE Transactions on Visualization and Computer
Graphics, v.3 nd4, p. 316-328, Oct. 1997 [doi>10.1109/2945.
646235].

Navratil et al., Dynamic Ray Scheduling to Improve Ray Coherence
and Bandwidth Utilization, Proceedings of the 2007 IEEE Sympo-
sium on Interactive Ray Tracing, p. 95-104, Sep. 10-12, 2007
[doi>10.

Overbeck et al.: Large ray packets for real-time Whitted ray tracing.
In Proc. of Interactive Ray Tracing (2008).

Pantaleoni et al., PantaRay: fast ray-traced occlusion of massive
scenes, ACM Transactions on Graphics (TOG), v.29 n.4, Jul. 2010
[doi>10.1145/1778765.1778774].

Pharr et al., Rendering complex scenes with memory-coherent ray
tracing, Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, p. 101-108; Aug. 1997 [doi>10.
1145/258734.2587.

Ramani et al., 2009. StreamRay: a stream filtering architecture for
coherent ray tracing. SIGPLAN Not. 44, 3 (Mar. 2009), 325-336.
DOI=10.1145/1508284.1508282 http://doi.acm.org/10.1145/
1508284.1508282.

Reinhard et al., Hybrid scheduling for parallel rendering using coher-
ent ray tasks, Proceedings of the 1999 IEEE symposium on Parallel
visualization and graphics, p. 21-28, Oct. 25-26, 1999, San Fran-
cisco, California.

Reshetov et al., Multi-level ray tracing algorithm, ACM Transactions
on Graphics (TOG), v.24 n.3, Jul. 2005 [doi>10.1145/1073204.
1073329].

Tsakok, J., Faster incoherent rays: Multi-BVH ray stream tracing,
Proceedings of the Conference on High Performance Graphics 2009,
Aug. 1-3, 2009, New Orleans, Louisiana [doi>10.1145/1572769.
1572793].

Wald et al. “SIMD Ray Stream Tracing—SIMD Ray Traversal with
Generalized Ray Packets and On-the-fly Re-Ordering.” Informe
Técnico, SCI Institute (2007).

Wald et al., Interactive distributed ray tracing of highly complex
models, Proceedings of the 12th Eurographics conference on Ren-
dering, Jun. 1, 2001, London, UK [doi>10.2312/EGWR/EGWRO1/
277-288].

Wald et al.: Getting rid of packets: efficient SIMD single-ray traversal
using multi-branching BVHs. In Proc. of Interactive Ray Tracing
(2008).

U.S. Appl. No. 12/043,041, filed Mar. 5, 2008, Titled “Multithreading
in Rendering ”, First Named Inventor: Fong.

U.S. Appl. No. 12/120,711, filed May 15, 2008, Titled “Lagrangian
Filtering”, First Named Inventor: Carpenter.

U.S. Appl. No. 12/533,965, filed Jul. 31, 2009, Titled “System and
Methods for Implementing Object Oriented Structures in a Shading
Language”, First Named Inventor: Duff.

U.S. Appl. No. 13/280,258, filed Oct. 24, 2011, Titled “Program-
mable System for Artistic Volumetric Lighting”, First Named Inven-
tor: Nowrouzezahrai.

* cited by examiner

U.S. Patent Sep. 1, 2015 Sheet 1 of 4 US 9,123,162 B2

100

Workstation 110

r Processor 112 J

v

Memory 114

Input Device 135

Rendering Application
120

Camera Cones 122

Geometry Node 124

Scene Bounding
Hierarchy 126

Output Image 128

!

GPU 116

Display 118

AT TN
~

Scene Data 150

Network 140

Object Geometry
154

Server 145a

Lighting 155

Server 145b

Textures 156

Shaders 157

Server 145¢

U.S. Patent Sep. 1, 2015 Sheet 2 of 4 US 9,123,162 B2

Fig. 2 Vs

299 265

260
223
218

U.S. Patent Sep. 1, 2015 Sheet 3 of 4 US 9,123,162 B2

321 354

Fig. 3B

301

354

U.S. Patent Sep. 1, 2015 Sheet 4 of 4 US 9,123,162 B2

Fig. 4 /“°°

Arrange a scene having a plurality of scene

objects into a scene bounding hierarchy 410
Intersect a cone with the scene bounding
hierarchy to determine an intersecting set of 420

scene objects from the plurality of scene
objects

Compute an integration result for the
intersecting set of scene objects by 430
directional sampling within the cone

Shade an output image based on the
integration result

440

US 9,123,162 B2

1
INTEGRATION CONE TRACING

BACKGROUND

Realistic lighting is an important component of high qual-
ity computer rendered graphics. By utilizing a renderer
employing a global illumination model, scenes can be pro-
vided with convincing reflections and shadows, providing the
requisite visual detail demanded by feature length animated
films and other content. Conventionally, a Monte Carlo based
ray tracing renderer may be utilized to provide global illumi-
nation in a simple manner.

SUMMARY

The present disclosure is directed to integration cone trac-
ing, substantially as shown in and/or described in connection
with at least one of the figures, as set forth more completely in
the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 presents an exemplary diagram of a system for
providing integration cone tracing;

FIG. 2 presents an exemplary cone-based lens model for
integration cone tracing;

FIG. 3A presents an exemplary diagram of secondary
bounces resulting from a primary cone to provide global
illumination;

FIG. 3B presents an exemplary diagram of secondary
bounce sharing for optimizing global illumination passes;
and

FIG. 4 presents an exemplary flowchart illustrating a
method for providing integration cone tracing.

DETAILED DESCRIPTION

The following description contains specific information
pertaining to implementations in the present disclosure. One
skilled in the art will recognize that the present disclosure
may be implemented in a manner different from that specifi-
cally discussed herein. The drawings in the present applica-
tion and their accompanying detailed description are directed
to merely exemplary implementations. Unless noted other-
wise, like or corresponding elements among the figures may
be indicated by like or corresponding reference numerals.
Moreover, the drawings and illustrations in the present appli-
cation are generally not to scale, and are not intended to
correspond to actual relative dimensions.

With large processing overhead and highly random data
access requirements, ray tracing becomes less suitable for
complex scenes with larger amounts of data. Since memory
requirements for efficient random access grow with scene
complexity, the straightforward ray tracing renderer becomes
impractical for rendering the highly detailed scenes required
for feature films and other challenging applications.

Additionally, because of the random parameters inherent
in Monte Carlo based ray tracing, many samples are required
per pixel to provide adequate noise filtering in the final render.
With high resolution rendering targets, the number of
required samples may exceed available computational ren-
dering capacity, as each half-wise reduction of noise requires
a corresponding quadrupling of sample counts. While noise
may be reduced in post-processing workflows, it is desirable
to avoid such time-consuming and labor-intensive processes.

Accordingly, FIG. 1 presents an exemplary diagram of a
system for providing integration cone tracing. Diagram 100

10

15

20

25

30

35

40

45

50

55

60

65

2

of FIG. 1 includes workstation 110, display 118, user 130,
input device 135, network 140, servers 145a, 1455 and 145¢,
and scene data 150. Workstation 110 includes processor 112,
memory 114, and graphics processing unit (GPU) 116.
Memory 114 includes rendering application 120, camera
cones 122, geometry node 124, scene bounding hierarchy
126, and output image 128. Scene data 150 includes object
geometry 154, lighting 155, textures 156, and shaders 157.

Workstation 110 may be any computing device such as a
rackmount server, desktop computer, or mobile computer.
User 130 may utilize input device 135, for example a key-
board and mouse, to direct the operation of rendering appli-
cation 120 executing in memory 114 of processor 112. Ren-
dering application 120 may process scene data 150 received
from network 140 to generate a rendered output image 128 for
output to display 118 through GPU 116. Network 140 may be
a high speed network suitable for high performance comput-
ing (HPC), for example a 10 GigE network or an InfiniBand
network. Once completed, output image 128 may also be
copied to non-volatile storage, not shown in FIG. 1.

For simplicity, it is assumed that output image 128 is only
a single frame, and that object geometry 154 already includes
the positioning of all objects within the scene for the associ-
ated frame. However, in alternative implementations, scene
data 150 may further include motion data for object geometry
154, in which case, several animation frames may be rendered
by rendering application 120. Moreover, some implementa-
tions may render multiple frames of the same scene concur-
rently, for example, to provide alternative camera angles or to
provide stereoscopic rendering.

Lighting 155 may include the properties ofall light sources
within the scene. Textures 156 may include all textures
related to or used for object geometry 154. Shaders 157 may
include any shaders related to or used to correctly shade
object geometry 154. Other data may also be stored in scene
data 150, such as for example, virtual camera parameters and
camera paths.

As previously discussed, it is desirable to provide realistic
lighting for a computer generated graphics rendering, or out-
put image 128. While rasterizing renderers can provide high
performance, global illumination can only be approximated.
For demanding applications such as feature film rendering,
global illumination is required from rendering application
120. However, if a conventional Monte Carlo based ray tracer
is utilized for rendering application 120, significant noise is
easily introduced into output image 128 unless a large number
of samples are provided for filtering, which may be imprac-
tical for higher resolutions such as Full HD or 4K resolutions.

Accordingly, integration cone tracing is proposed for ren-
dering application 120, rather than conventional ray tracing.
Camera cones 122 for rendering output image 128 are gen-
erated within memory 114. Camera cones 122 may sample
radiance values, visibility values, or any other scene attribute.
Object geometry 154 is organized into a scene bounding
hierarchy 126, which may be any type of bounding volume
hierarchy (BVH). Object geometry 154 may thus be streamed
into memory 114 according to a traversal of scene bounding
hierarchy 126. Accordingly, object geometry 154 may be
streamed as individual work units or nodes, with an exem-
plary geometry node 124 as shown in FIG. 1. Geometry node
124 may then be integrated within camera cones 122 using
other elements of scene data 150 if needed, after which geom-
etry node 124 may be freed from memory 114. Any bounces
for evaluating secondary cones may also be queued for a
future global illumination pass. Since all processing may be
completed after freeing or deallocating the node from
memory 114, each geometry node 124 of object geometry

US 9,123,162 B2

3

154 may be accessed at most once, and may also be skipped
if the geometry node is not visible in the current scene. In one
configuration, the above streaming of object geometry 154
may be repeated for as many global illumination passes as
desired, for example 2-4 passes.

Since each geometry node 124 is an individual work unit
and can be processed without dependencies from other geom-
etry nodes, servers 145a, 1455, and 145¢ may also be utilized
for distributed parallel processing. However, in alternative
implementations, depending on the complexity of scene data
150 and the available amount of memory 114, scene data 150
may be wholly stored in memory 114 or partially cached in
memory 114.

Servers 145a, 1455, and 145¢ may contain components
similar to those of workstation 110. SIMD (single instruction,
multiple data) instructions on processor 112 and shaders on
GPU 116 may be utilized to further enhance parallelism.
Hierarchical traversal of camera cones 122 across scene
bounding hierarchy 126 may also be utilized to reduce the
number of integrations required.

Since scene geometry is integrated within cones for trac-
ing, a much smaller number of cones is required for cone
tracing compared to conventional ray tracing, where a large
sampling of surface geometry intersections with camera rays
is needed for sufficient noise filtering. More specifically,
since filtering can be processed on-the-fly during cone inte-
gration rather than being deferred to a final filtering step, the
number of cones may be reduced to a smaller number during
the rendering process, with refinement through cone subdi-
viding or sampling only if needed. For example, variance in
the cone may be tracked using function objects and compared
to a noise threshold to determine whether further refinement
is desired. On the other hand, if less precision is desired, then
computational shortcuts such as probabilistic integration may
be utilized.

FIG. 2 presents an exemplary cone-based lens model for
integration cone tracing. Diagram 200 of FIG. 2 includes
image plane 218, pixel 229, lens 260, aperture 265, and cone
223. With regards to FIG. 2, image plane 218 may correspond
to display 118 of FIG. 1, which may display output image 128
formed from a grid of pixels, including pixel 229.

As shown in FIG. 2, a single cone 223 may be traced with
scene geometry (not shown) integrated within cone 223 to
determine the composition of pixel 229. Accordingly, a plu-
rality of camera cones 122, including cone 223, is traced
within a scene represented by scene data 150 to render a
completed output image 128. Aperture 265 and lens 260 may
be adjusted according to desired virtual camera parameters,
with the size of cone 223 set to provide the desired level of
detail (LOD). As a benefit of using a cone-based lens model,
depth-of-field is naturally provided, and volume effects
including photon beams, grids, and particles can be readily
implemented by streaming cone 223 through a volume
shader.

While diagram 200 shows a single cone 223 corresponding
to a single pixel 229, alternative embodiments may also have
cones corresponding to multiple pixels or “superpixels.” In
this manner, a smaller working set of primary cones may be
utilized while refining the cones only if needed to fill out areas
requiring more detail. Moreover, while cone 223 utilizes a
cone shape, any arbitrary shape may be used including
polygonal shapes, curved cones, time-varying shapes, and
other non-circular shapes. For example, curved cones may be
desired to provide non-linear stereo depth disparity and other
artistic effects.

FIG. 3A presents an exemplary diagram of secondary
bounces resulting from a primary cone to provide global

10

15

20

25

30

35

40

45

50

55

60

65

4

illumination. Diagram 300 of FIG. 3A includes primary cone
323a, a plurality of secondary cones including an exemplary
secondary cone 3235, shading hit 321, and geometry surface
354.

To provide global illumination, secondary cones for reflec-
tions or transmissions must be generated where primary
cones generate shading hits on geometry surfaces. Thus, as
shown in diagram 300 of FIG. 3A, a primary cone 323a may
generate a shading hit 321 on geometry surface 354, resulting
in a plurality of secondary cone bounces in an approximately
hemispherical shape including the exemplary secondary code
323b. However, if primary cones are individually traced, and
secondary cones are generated for each primary cone as in
FIG. 3 A, the number of secondary cones may quickly grow to
an unmanageable size, especially for the multiple global illu-
mination passes required for multiple reflections.

Thus, FIG. 3B presents an exemplary diagram of second-
ary bounce sharing for optimizing global illumination passes.
Diagram 301 of FIG. 3B includes geometry surface 354 and
a plurality of shading hits including an exemplary shading hit
321a. Diagram 302 of FIG. 3B includes a plurality of second-
ary cones including an exemplary secondary cone 3235.

Rather than immediately evaluating each set of secondary
bounces for each individual primary cone, all shading hits
from the primary cones for a given geometry surface 354,
including the exemplary shading hit 3214, are first gathered in
diagram 301. Then, a plurality of secondary cones minimally
satisfying all of the shading hits is generated, including the
exemplary secondary cone 3235 in diagram 302. By sharing
secondary bounces in this manner, the working set of second-
ary cones may be restricted to a reasonable number at each
global illumination bounce pass while still providing suffi-
cient visual quality. Smaller numbers of wider secondary
cones may be favored while a large number of cones are still
active, whereas larger numbers of smaller secondary cones
may be favored when a smaller number of cones are active,
for example after culling cones. The number of secondary
cones may also be increased for areas of high variance.

FIG. 4 presents an exemplary flowchart illustrating a
method for providing integration cone tracing. Flowchart 400
begins when processor 112 of workstation 110 arranges a
scene represented by scene data 150 into scene bounding
hierarchy 126 (block 410). For example, object geometry 154
may be spatially divided into scene nodes, which are then
organized into a tree-based bounding volume hierarchy
(BVH) or another data structure. The tree may be organized as
a binary, quad, or n-ary BVH, and may preferably be an n-ary
BVH where n is at least three (3) for greater parallelism.

Next, processor 112 of workstation 110 generates camera
cones 122 in memory 114 for tracing in a scene represented
by scene data 150 (block 420). More specifically, one or more
cones may be intersected with scene bounding hierarchy 126
to determine an intersecting set of scene objects from object
geometry 154. Each camera cone 122 may map to a single
pixel or multiple pixels (superpixels) of output image 128.
Moreover, while the term “camera cone” is utilized, any
shape may be utilized.

After camera cones 122 are generated according to the
desired camera view of scene data 150, camera cones 122
may be organized and sorted, for example by origin point and
direction vector, thereby facilitating bounding box (or sphere
or other shape) testing. As previously discussed, camera
cones may also be generated from multiple camera views to
provide alternative views or to provide stereoscopic render-
ing, and may also be taken with different exposure times for
motion blur. Since a large number of camera cones may need
to be sorted, GPU 116 may be utilized for accelerated sorting.

US 9,123,162 B2

5

For example, the high performance RadixSorting algorithm
can sort over 1 G keys per second on a modern CUDA com-
patible GPU. See, “RadixSorting, High performance GPU
radix sorting in CUDA”, available from http://code.google-
.com/p/back40computing/wiki/RadixSorting.

Once camera cones 122 are ready, processor 112 of work-
station 110 accesses a plurality of geometry nodes from
object geometry 154 for integration within camera cones 122.
As discussed above, one method is to stream object geometry
154 from network 140 according to a traversal of scene
bounding hierarchy 126, loading geometry node 124 as one
work unit, performing all processing of geometry node 124 at
once, and freeing geometry node 124. In other implementa-
tions, object geometry 154 may be completely or partially
cached in memory 114. Since all computations are finished
after freeing each node, each of the plurality of geometry
nodes may be accessed no more than once, and may be
skipped entirely if not visible in the scene, for example behind
the camera view. After reducing the possible candidates of
camera cones 122 for integration with geometry node 124 to
determine the intersecting set of scene objects, for example
by bounding box testing, cone integration may proceed and
shading hits on geometry surfaces may be recorded accord-
ingly.

Next, processor 112 of workstation 110 computes an inte-
gration result for the intersecting set of scene objects by
directional sampling within camera cones 122 (block 430). In
one implementation, the directional sampling may be by trac-
ing rays within camera cones 122. The rays may be traced
from the base of a given cone in camera cones 122 along an
axis of the cone in one direction. The base may be positioned
at the apex of the cone. Alternatively, the base may be placed
atasection ofthe cone at a distance from the apex of the cone,
for example to provide a particular focal distance for depth-
of-field effects.

Thus, at each recorded hit surface, ray tracing point
samples may be taken and various properties may be evalu-
ated to determine the shading of the surface including the
material properties of the object surface, lighting 155, tex-
tures 156, and shaders 157. Accordingly, output image 128
may be shaded based on the above evaluation of the integra-
tion result from the directional sampling (block 440). In other
implementations, the directional sampling may be by tracing
cones within camera cones 122. While the above example
assumes a visibility estimate for the integrand, the integrand
may also be a visibility function or any other scene function.

Furthermore, rather than just integrating radiance, the esti-
mated gradient of the radiance may also be integrated in
addition to the radiance to allow for smooth reconstruction. If
geometry needs to be procedurally generated, displaced,
instantiated, or tessellated, such operations may be performed
here prior to the hit testing and may also take advantage of the
natural coherence benefits from geometry node 124.

Alternatively, rather than sampling points within the cone,
the cone may be subdivided and shaded as area integration
with the geometry surface. In this manner, the generation of
rays for surface sample points is avoided, and super-sampling
of displacements, self-shadowing, and other computationally
intensive tasks may be carried out only if needed.

If' secondary cones are to be spawned according to lighting
155 and/or the reflective or transmissive properties of the
object surface, for example to compute global illumination,
the generation of these cones may be queued at scene nodes
and deferred for coherent data access of object geometry and
related shaders and textures. Additionally, secondary cones
may by shared amongst primary or previous bounce cones to
limit the number of cones required.

10

15

20

25

30

35

40

45

50

55

60

65

6

Even further, to determine complex object visibility within
cones, space-time stencils may be provided within the cones.
For example, in conventional cone tracing, a cone that is
partially blocked by an object may simply estimate the opac-
ity of the remaining cone trace by the amount of blockage. If
a cone is cast on an object and is blocked by 50%, rendering
application 120 may simply assume that the remainder of the
cone to be rendered is at 50% opacity. However, this assump-
tion falls short for correlated objects, for example, a perfect
line of objects or a person and his shirt. Respecting correlated
visibility is particularly important for motion blur, where
moving correlated objects may only be visible in a cone
during a fraction of the shutter time interval. Accordingly,
space-time stencils may be utilized to account for complex
object visibility in the scene, which can include a number of
subsamples in the cone, spreading out over space and time
and independently tracking distance to scene objects.

Thus, the computation of the integration result may be
integrated over time, rather than being restricted to a single
point in time. The shape, position, direction, angle, orienta-
tion, and any other parameters of camera cones 122 and object
geometry 154 may dynamically change over time, for
example to provide motion-blur, depth warping, or other
effects. Fast moving objects may also be rendered with less
detail, as they will be blurred anyway in the final render.

The variance of the integrand may also be estimated to
provide for adaptive sampling. The estimated variance may
be tracked and compared against a noise tolerance threshold.
The noise tolerance threshold is set such that an individual ray
trace provides a minimum quality level. As each of camera
cones 122 represents only a fractional contribution to output
image 128 and may hit only a fractional surface area of a
particular geometry surface and a fractional solid angle, the
noise tolerance threshold may be increased for each cone as
the effects of the individual rays within the cones become
increasingly attenuated.

If the tracked variance of a cone exceeds the noise thresh-
old, then the directional sampling may be refined with
increased precision and filtering by cone subdivision or
super-sampling to meet the noise threshold. This refining step
may also be deferred until a subset or all of camera cones 122
are shaded to reduce the working set. On the other hand, if a
large buffer is available between the variance and the noise
threshold, for example due to the use of a wide cone, then
fewer directional samples may be taken, or computational
shortcuts such as probabilistic integration or stochastic sam-
pling may be utilized. Additionally, as previously discussed,
the size of the cone may be set for a desired level-of-detail
(LOD), for example by comparing a size of the cone to a size
of'the set of intersecting scene objects to determine the LOD.

After processing of geometry node 124 against camera
cones 122 is finished, the current geometry node 124 may be
freed from memory 114, the next geometry node 124 may be
streamed from object geometry 154, and integration tracing
(block 420), shading and bouncing (block 430), and shading
refinements (block 440) may be repeated for the new geom-
etry node 124. The selection of the new geometry node 124
may be based on a traversal hierarchy, as previously dis-
cussed. Alternatively, object geometry 154 may already be
partially or wholly cached within memory 114. While the
above example assumes that workstation 110 solely renders
outputimage 128, alternative implementations may distribute
the streaming of geometry nodes for parallel processing using
multiple computing devices, for example servers 145a, 1455,
and 145c¢.

New global illumination bounce passes may be executed
by repeating the prior actions in blocks (420), (430), and

US 9,123,162 B2

7

(440). Sufficiently high quality results may be provided even
with a small number of passes, for example 2-4.

Once the final bounce pass has been completed and the
integration results have been accumulated into the previous
passes, the camera cone integration results may be combined
to form a final output image. Accordingly, output image 128
is now ready to be stored in non-volatile storage as part of a
larger render project, and may also be shown on display 118
for observation and possible adjustment by user 130.

From the above description it is manifest that various tech-
niques can be used for implementing the concepts described
in the present application without departing from the scope of
those concepts. Moreover, while the concepts have been
described with specific reference to certain implementations,
a person of ordinary skill in the art would recognize that
changes can be made in form and detail without departing
from the spirit and the scope of those concepts. As such, the
described implementations are to be considered in all respects
as illustrative and not restrictive. It should also be understood
that the present application is not limited to the particular
implementations described herein, but many rearrangements,
modifications, and substitutions are possible without depart-
ing from the scope of the present disclosure.

What is claimed is:

1. A computing device for providing integration cone trac-
ing, the computing device comprising:

a processor configured to:

arrange a scene having a plurality of scene objects into a
scene bounding hierarchy;

intersect a cone with the scene bounding hierarchy to
determine an intersecting set of scene objects from the
plurality of scene objects;

compute an integration result for the intersecting set of
scene objects by a directional sampling within the
cone, wherein the integration result is computed using
the directional sampling by ray tracing within the
cone, and wherein an integrand for the computing of
the integration result is a radiance estimate; and

shade an output image based on the integration result.

2. The computing device of claim 1, wherein the comput-
ing of the integration result further bounces the cone for
multi-pass global illumination.

3. The computing device of claim 1, wherein the cone
includes stencils for calculating object visibility of the scene.

4. The computing device of claim 1, wherein the cone is a
shape selected from the group consisting of a cone, a curved
cone, a polygonal shape, a time-varying shape, and a non-
circular shape.

5. The computing device of claim 1, wherein the comput-
ing of the integration result is from a base of the cone along a
cone axis in one direction.

6. The computing device of claim 5, wherein the base of the
cone is selected from an apex of the cone or a section of the
cone at a distance from the apex of the cone.

7. The computing device of claim 1, wherein the direc-
tional sampling within the cone is by rays.

8. The computing device of claim 1, wherein the direc-
tional sampling within the cone is by cones.

9. The computing device of claim 1, wherein an integrand
for the computing of the integration result is a visibility esti-
mate.

10. The computing device of claim 1, wherein the comput-
ing of the integration result estimates a gradient of the inte-
grand.

11. The computing device of claim 10, wherein the gradi-
ent is used to perform a smooth reconstruction of the inte-
grand.

8

12. A computing device for providing integration cone
tracing, the computing device comprising:

a processor configured to:

arrange a scene having a plurality of scene objects into a
5 scene bounding hierarchy;
intersect a cone with the scene bounding hierarchy to
determine an intersecting set of scene objects from the
plurality of scene objects;
compute an integration result for the intersecting set of
scene objects by a directional sampling within the
cone, wherein the integration result is computed using
the directional sampling by ray tracing within the
cone; and
shade an output image based on the integration result;
wherein the computing of the integration result esti-
mates a variance of an integrand.
13. The computing device of claim 12, wherein the vari-
ance is used to refine the directional sampling.
14. The computing device of claim 13, wherein the vari-
ance is compared to a noise tolerance threshold to determine
a degree of the refinement.
15. The computing device of claim 14, wherein the refining
is by subdividing the cone if the variance in the cone exceeds
the noise tolerance threshold.
16. A computing device for providing integration cone
tracing, the computing device comprising:
a processor configured to:
arrange a scene having a plurality of scene objects into a
scene bounding hierarchy;
intersect a cone with the scene bounding hierarchy to
determine an intersecting set of scene objects from the
plurality of scene objects;
compute an integration result for the intersecting set of
scene objects by a directional sampling within the
cone, wherein the integration result is computed using
the directional sampling by ray tracing within the
cone; and
shade an output image based on the integration result;
wherein the computing of the integration result com-
pares a size of the set of scene objects to a size of the
cone to determine a level-of-detail (LOD).
17. The computing device of claim 1, wherein the comput-
ing of the integration result is performed over time.
18. A method for providing integration cone tracing for use
by a computing device having a processor, the method com-
prising:
arranging, by the processor, a scene having a plurality of
scene objects into a scene bounding hierarchy;

intersecting, by the processor, a cone with the scene bound-
ing hierarchy to determine an intersecting set of scene
objects from the plurality of scene objects;

computing, by the processor, an integration result for the

intersecting set of scene objects by a directional sam-
pling within the cone, wherein the integration result is
computed using the directional sampling by ray tracing
within the cone; and

shading, by the processor, an output image based on the

integration result;

wherein the computing of the integration result includes at

least one of:

comparing a size of the set of scene objects to a size of
the cone to determine a level-of-detail (LOD);

estimating a radiance or a variance of an integrand.

19. The method of claim 18, wherein the computing of the
integration result further bounces the cone for multi-pass
global illumination.

20

25

40

45

50

65

